Refine Your Search

Topic

Author

Search Results

Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Cost Awareness in Design: The Role of Data Commonality

1996-02-01
960008
Enhanced information management techniques made available through emerging Information Technology platforms hold a promise of providing significant improvements in both the effectiveness and efficiency of developing complex products. Determining actual management implementations that deliver on this promise has often proven elusive. Work in conjunction with the Lean Aircraft Initiative at MIT has revealed a straight forward use of Information Technology that portends significant cost reductions. By integrating previously separate types of data involved in the process of product development, engineers and designers can make decisions that will significantly reduce ultimate costs. Since the results presented are not specific to particular technologies or manufacturing processes, the conclusions are broadly applicable.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Urban Vehicle Design Competition - History, Progress, Development

1972-02-01
720497
The Urban Vehicle Design Competition was inspired by the success of the Clean Air Car Race and the Great Electric Car Race. The academic community recognized the tremendous educational value of these events, and encouraged development of UVDC from its inception. The project was designed by engineering students to benefit students throughout North America. The rules of the competition include technical paper requirements that make the competition extremely attractive to professors who wish to build a course around this theme. The response of more than 2000 engineering students at 80 universities throughout the United States and Canada has indicated the success of the structure of the competition. The first major objective of the UVDC project has been met. Ninety-three teams throughout the country entered the UVDC design portion of the contest. The second portion of the project is the prototype contest of August 1972.
Technical Paper

Small Scale Research in Automobile Aerodynamics

1966-02-01
660384
This paper describes a three component strain gage balance designed to measure aerodynamic forces exerted on small automobile models when subjected to turbulence in an experimental wind tunnel. The instrument is described and the details of obtaining values with it are fully explained. Although tests were conducted on these models at quarter-scale Reynolds number, results agree closely with similar tests on larger models. The balance makes practical some unusual preliminary investigations before developing full-scale prototypes.
Technical Paper

Jet Fuel in Canadian Operations

1976-02-01
760528
The usage of aviation turbine fuel in Canadian operations has been the subject of a study sponsored by the Canadian Ministry of Transport. The study was designed to cover all aspects of aircraft operation from ground handling to aircraft in flight and included such parameters as availability and operating costs. Of particular importance was the effect of Canadian climatic conditions on the requirements for aviation turbine fuels for Northern operations. The final report prepared by an engineering consultant was based upon the reports from four sub-groups formed to cover all the aforementioned areas. The final conclusions of the study presented in this paper consider that due to the climatic conditions there is a place for both wide-cut and kerosene fuels in Canadian operations.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

1988-02-01
880278
A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

A Full Scale Class 8 Conventional Tractor-Trailer in the 9×9m Wind Tunnel

1988-10-01
881876
This paper outlines the techniques used to install both a full scale and a half scale tractor-trailer model in the 9×9 meter National Research Council of Canada wind tunnel in Ottawa, Canada. The objectives were to measure the cooling drag of an active cooling system and to investigate the aerodynamic testing limits of long, yawed models inside a solid wall wind tunnel. The tunnel interference problem is discussed as it pertains to the upstream boundary, test section floor, downstream boundary, ceiling and side walls and tractor-trailer surface pressure measurements. A potential solution to the problem, however, is the subject of a follow-up paper.
Technical Paper

Implications of Contingency Planning Support for Weather and Icing Information

2003-06-16
2003-01-2089
A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario-based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
Technical Paper

Non-Linear Analysis of Vehicle Dynamics (NAVDyn): A Reduced Order Model for Vehicle Handling Analysis

2000-05-01
2000-01-1621
Many vehicle-dynamics models exist to study the motion of a vehicle. Most of these models fall into one of two categories: very simple models for basic analyses and high-order models consisting of many degrees-of-freedom. For many scenarios, the simple models are not adequate. At the same time, for many vehicle handling and braking studies, the high-order models are more complex than necessary. This paper presents a model that includes the dynamics that are relevant to studying vehicle handling and braking, but is still simple enough to run in near real-time. The model was implemented in such a way that it is easily customized for a particular study. Predictions from this simplified model were compared against a high-order model and against actual vehicle test data. The simulations indicate a close agreement in the results.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

1999-10-25
1999-01-3578
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Technical Paper

Enhanced/Synthetic Vision Systems for Search and Rescue Operations

1999-10-19
1999-01-5659
The Enhanced/Synthetic Vision System (E/SVS) is a Technology Demonstrator (TD) project supported by the Chief, Research and Development of the Canadian Department of National Defence. E/SVS displays an augmented visual scene to the pilot that includes three separate image sources: a synthetic computer - generated terrain image; an enhanced visual image from an electro-optical sensor (fused as an inset); and aircraft instrument symbology, all displayed to the pilot on a Helmet Mounted Display (HMD). The synthetic component of the system provides a 40 degree vertical by 80 degree horizontal image of terrain and local features. The enhanced component digitizes imagery from electro-optic sensors and fuses the sensor image as an inset (20 degrees by 25 degrees) within the synthetic image. Symbology can be overlaid in any location within the synthetic field-of-view and may be head, aircraft, target or terrain referenced.
Technical Paper

Integrating the Production Information System with Manufacturing Cell Design - A Lean, Linked Cell Production System Design Implementation

1999-05-10
1999-01-1634
The linked cell system gives both reduced cost and volume flexibility. The characteristics of the linked cell system are a consequence of decoupling the operators from the machines, using standard work in process between the cells and by integrating the information system with the cell and system design. By decoupling the operators from the machines the capacity can be increased/decreased in small increments by using more or fewer operators in the cell. The information system is integrated with the linked cell design by the use of a Heijunka box. The Heijunka is used to level production and to initiate the pace of production as a result of pulling withdrawal kanban at a standard time interval. This standard time interval is called the pitch of production. The kanban cards give information about what to produce, when to produce, when to make changeovers but they also give information to control the material replenishment.
Technical Paper

Optimization-Based Robust Architecture Design for Autonomous Driving System

2019-04-02
2019-01-0473
With the recent advancement in sensing and controller technologies architecture design of an autonomous driving system becomes an important issue. Researchers have been developing different sensors and data processing technologies to solve the issues associated with fast processing, diverse weather, reliability, long distance recognition performance, etc. Necessary considerations of diverse traffic situations and safety factors of autonomous driving have also increased the complexity of embedded software as well as architecture of autonomous driving. In these circumstances, there are almost countless numbers of possible architecture designs. However, these design considerations have significant impacts on cost, controllability, and system reliability. Thus, it is crucial for the designers to make a challenging and critical design decision under several uncertainties during the conceptual design phase.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
X